房地产聚类分析案例,房地产聚类分析案例范文

dfnjsfkhak 2024-08-14 21

扫一扫用手机浏览

大家好,今天小编关注到一个比较意思的话题,就是关于房地产聚类分析案例问题,于是小编就整理了1个相关介绍地产聚类分析案例的解答,让我们一起看看吧。

  1. 如何入门机器学习?

如何入门机器学习

非常高兴回答题主的这个问题,最近机器学习是非常热门的一个研究方向,但是需要说明的是机器学习并不是一个新概念了。

早期的机器学习更多是用于数学模型的拟合,数据回归和数据挖掘领域。主要的算法包括朴素贝叶斯,k-近邻,聚类,主成分析PCA等,这都是非常经典的算法。题主至少要了解

房地产聚类分析案例,房地产聚类分析案例范文
(图片来源网络,侵删)

往后随着深度神经网络的出现,机器学习进入了深度机器学的新领域,很大程度上现在火热的机器学习就是指的深度机器学习,包括谷歌的阿尔法狗都属于这一领域。这一部分如何来学好呢?这涉及的知识主要有:1,数学基础知识,包括高数中的导数、梯度,线性代数中的矩阵运算以及概率论的有关内容;2,适合机器学习的编程语言,比如Python和相关的库比如科学计算库:Numpy等;3,选择一个成熟且功能强大的深度学习框架,比如Tensorflow。

最后就是一个好的教学教程,或是教学入门视频。这部分有很多资料,题主可以去搜索包括用某宝~

方法大致就是这样了,希望楼主可以通过一些项目不断的去学习,这一过程很可能会遇到一些困难或是问题,要多思考多逛帖子。一定能进步的。

房地产聚类分析案例,房地产聚类分析案例范文
(图片来源网络,侵删)

分享一下我以前自学的经验

前提条件:①一定的高等数学基础,微分、偏微分、概率论、线性代数等。刚接触不需要太深入,知道,熟悉一些概念即可(比如矩阵的行列式、偏微分求导)。②一定的编程基础,主要是Matlab,Python,熟悉基本的语法即可。③有一定的英文听读能力如果以上条件不具备,建议别入坑。

第一步:直接上Cousera搜斯坦福大学(Stanford)吴恩达的机器学习课程。如果掌握了前提知识,跟着学,学得懂。不懂的数学概念查资料。课后的练习是该课的精华,一定要自己做。如果不会***,B站搜吴恩达机器学习网课版即可。

房地产聚类分析案例,房地产聚类分析案例范文
(图片来源网络,侵删)

这个过程持续1个月,在这期间,可以买一本周志华老师的《机器学习》和李航老师的《统计学习方法》。前者是入门经典,后者更多从数学的角度来讲机器学习,加深理解。

第二步:上完机器学习后,直接上吴恩达的深度学习大课,这么大课又分几门小课,涵盖了深度学习的方方面面,比如CNN、RNN、LSTM、ResNet等。由于深度学习发展很快,一些新的算法并没有讲到,一些算法可能已经过时,但学习思想也是很重要的。

上完这一系列课程大概3个月,在这期间可以买一本《Deep Learning》,最好是英文原版。根据个人情况买一些其它书籍

第三步:完成了上面两步,基本就算入门了。接下来就是实践+持续学习了。多去github找开源项目,B站、慕课网去找实战项目。边学边做,达到一个熟练的程度。有机会,参加一下比赛,多跟大神交流。

这么做,基本上半年,就可以入门了。

在开始学习ML之前,首先需要掌握一些基础知识。

1.学习微积分

您需要的第一件事是多变量演算。

在哪里学习: 确保做练习题。 否则,您只会随课程一起点头,不会学任何东西。

2.学习线性代数

注意:我听过令人信服的论点,您可以跳过微积分和线性代数。 我认识的一些人直接进入了ML,并通过反复试验和直觉了解了他们所需的大多数知识,结果证明还可以。 您的里程会有所不同,但是无论您做什么,都不要跳过此下一步

3.学习编码

您需要的最后一件事是使用Python的编程经验。 您可以使用其他语言进行ML,但是如今,Python已成为黄金标准

您还应该密切注意numpy和scipy软件包。 那些很多。

关于良好的编程习惯,我还有很多话要说。 一句话:通过良好的测试和错误处理,使代码清晰易懂且模块化。

到此,以上就是小编对于房地产聚类分析案例的问题就介绍到这了,希望介绍关于房地产聚类分析案例的1点解答对大家有用。

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。转载请注明出处:http://www.kibrisferibotseferleri.com/post/57598.html

相关文章